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a b s t r a c t 

Molecular machine learning based on graph neural network has a broad prospect in molecular prop- 

erty identification in drug discovery. Molecules contain many types of substructures that may affect their 

properties. However, conventional methods based on graph neural networks only consider the interac- 

tion information between nodes, which may lead to the oversmoothing problem in the multi-hop oper- 

ations. These methods may not efficiently express the interacting information between molecular sub- 

structures. Hence, We develop a Molecular SubStructure Graph ATtention (MSSGAT) network to capture 

the interacting substructural information, which constructs a composite molecular representation with 

multi-substructural feature extraction and processes such features effectively with a nested convolution 

plus readout scheme. We evaluate the performance of our model on 13 benchmark data sets, in which 9 

data sets are from the ChEMBL data base and 4 are the SIDER, BBBP, BACE, and HIV data sets. Extensive 

experimental results show that MSSGAT achieves the best results on most of the data sets compared with 

other state-of-the-art methods. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Drug discovery is time-consuming, labor intensive, and expen- 

ive. It usually starts with experimental discoveries of molecules 

nd targets (i.e., de novo drug design) and the validations with in 

itro experiments on cell lines and animals before moving to clin- 

cal tests [1] . The entire process from the discovery to the regula- 

ory approval of a new drug can take as long as 12 years and cost

pwards of US 2.8 billion. Furthermore, each drug developing stage 

as a very low success rate of about 1 / 50 0 0 . 

Drug discovery is equipped with statistical learning since the 

ise of computational chemistry. In order to increase the speed 

f drug screening and reduce costs, researchers in cheminformat- 

cs have been building quantitative structure activity relationships 

QSAR) via machine learning methods [2,3] . In recent years, with 

ncreasing biochemistry data volumes and advanced computing 
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achines (e.g., Graphics Processing Unit, GPU), a large number 

f deep learning methods are applied to drug discovery because 

f their powerful capability of feature extraction and flexibility 

f model structures compared with conventional machine learn- 

ng methods [4,5] . Due to the particularity of compound structures 

nd the limitations of early-era feature engineering (e.g., molecular 

ngerprints, descriptors, and Simplified Molecular-Input Line-Entry 

ystem strings, SMILES [6] ), it is difficult for conventional neural 

etworks to extract compound substructural information from raw 

olecules. 

The emergence of graph convolutional networks (GCN) brings in 

 new breakthrough in drug-related tasks [7] . Niepert et al. [8] pro- 

ose a general method to extract local information from graph 

ata and apply it to the activity prediction of compound molecules. 

tructural representation of compound molecules is encoded as a 

olecular fingerprint, a high dimensional vector of binary digits. 

uvenaud et al. [9] use a GCN to obtain molecular fingerprints and 

pply it to molecular property prediction. Kearnes et al. [10] de- 

elop a GCN called “weave module”, which can aggregate the atom 

nd bond information as node features, and apply it to activity pre- 

iction. Zhang et al. [11] propose a graph neural network based 

n the graph structure GSCN, which balances between the impor- 
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Fig. 1. Entire structure of MSSGAT. 

t

f

t

g

b

s

n

e

a

s

d

s

f

s

t

l

t

i

l

s

m

t

p

t

g

g

w

a

e

r

G

d

t

c

c

m  

4  

t

r

a

2

o

c

s

m

s

t

e

r

h

m

t

t

t

s

e

s

[

N

w

d

A

s

d

i

m

g

c

t

s

t

t

i

c

G

g

t

e

G

(

l

t

s

c

M

f

r

b

b

t

m

MSSGAT. 
ance of graph structural information and the node neighboring in- 

ormation. Since molecular property prediction is on the level of 

he entire compound structure, Herr et al. [12] propose the entire 

raph-level representation learning, which is shown to be effective 

y the experiments. Ding et al. [13] learn the graph-level repre- 

entation by combining the depth-first-search algorithm with their 

ode selection strategy on the features of local structures. Fang 

t al. [14] introduce a structured multi-head self-attention mech- 

nism to obtain the graph-level representation of the fused graph 

tructural information. 

Although there are a large number of GNNs and GCNs han- 

ling molecular structures, these conventional methods only con- 

ider the interaction information between nodes, which may suf- 

er from the oversmoothing problem of multi-hop operations. They 

eldom take molecular substructures into consideration, but the in- 

eracting information between substructures is crucial to molecu- 

ar properties. Consequently, the molecular substructural informa- 

ion is not fully utilized, especially for biomacromolecules contain- 

ng polycyclic structures. To fill this gap, we propose a Molecu- 

ar SubStructure Graph ATtention (MSSGAT) network, whose entire 

tructure is shown in Fig. 1 . The main contributions can be sum- 

arized as follows: 1. We propose to use a structural feature ex- 

raction scheme including 3 types of features (raw + tree decom- 

osition + ECFP): raw molecular graphs, molecular structural fea- 

ures via tree decomposition [15] , and Extended-Connectivity Fin- 

erPrints (ECFP) [16] . 2. We design a framework including several 

raph attention convolutional (GAC) blocks and deep neural net- 

ork (DNN) blocks to process the above structural features. We 

lso improve the GAC blocks to relieve the gradient vanishing or 

xploding problem. 3. We design a readout block based on gated 

ecurrent units (GRU) [17] . The readout blocks collaborate with the 

AC blocks in a nested architecture to obtain molecular embed- 

ings. 4. We visualize the molecules and mark the most impor- 

ant atoms with the attention scores produced by MSSGAT, which 

an be a good reference for subsequent researches by medicinal 

hemists. We evaluate the performance of MSSGAT on 13 bench- 

ark data sets, in which 9 are from the ChEMBL data base [18] and

 are the SIDER [3] , BBBP [3] , BACE [3] , and HIV [3] data sets. Ex-

ensive experimental results show that MSSGAT achieves the best 

esults on most of the data sets compared with other state-of-the- 

rt methods. 

. Related works 

Due to the establishment of drug data bases, methods based 

n deep learning have caught more attention in the pharmaceuti- 

al industry. First, DNN has been widely used in the quantitative 

tructure activity relationship (QSAR). Ma et al. [19] use experi- 

ents to verify that QSAR models based on DNNs are better than 
2 
ome traditional machine learning models (the random forest and 

he support vector machine). You et al. [20] show that DNNs are 

ffective in predicting drug-target pairs and can be used for drug 

epurposing. Li et al. [21] use a multi-task DNNs model to predict 

uman cytochrome P450 inhibitors, and the results show that the 

ulti-task model has a better predictive effect than several tradi- 

ional machine learning models (SVM, KNN, the decision tree, and 

he logistic regression). 

Accelerating the speed of virtual screening and accurately cap- 

uring compounds that interact with the targets have been hot 

pots in drug research in recent years. The emergence of Gen- 

rative Adversarial Networks (GAN) [22] provides new ideas for 

peeding up the research of virtual drug screening. Kadurin et al. 

23] adopt the anti-autoencoding (AAE) network structure, and use 

CI-60 cell line assay data for 6252 compounds to train the net- 

ork. The output of the network is used to search the pubchem 

ata base and screen out candidates with anticancer activities. 

AEs can be used to generate new molecular fingerprints that have 

pecific molecular characteristics. 

Recently, some GCNs have been applied to the property pre- 

iction for small molecules. They mainly consider the interacting 

nformation between nodes, which is indicated by the adjacency 

atrix of the molecular graph. However, traditional GCNs may ne- 

lect the fact that chemical bonds (edges) in different molecules 

an be similar if the interatomic distances are similar. To address 

his problem, Shang et al. [24] develop an Edge–Aware multi-view 

pectral GCN (EAGCN) approach to enhance the property predic- 

ion for small molecules. 

Nevertheless, existing graph-based models may neglect the in- 

eracting information between molecular substructures, which also 

nfluences the molecular property based on the knowledge of 

hemistry. Zhang et al. [25] develop a fragment-oriented GAT (Fra- 

AT) to boost the interaction between fragments of molecular 

raphs, which may retain functional groups. FraGAT also aggregates 

he atom-level features to represent the molecular graph. How- 

ver, if most rings are partitioned into the same fragment, Fra- 

AT may deteriorate in macromolecules like polycyclic molecules 

i.e., molecules containing no less than 5 rings), because the topo- 

ogical information between rings is not fully utilized. Similarly, 

he RNN-based MSGG model [26] transforms a molecule into a 

ubstructure-based graph. Then this graph is expanded into three- 

hannel sequences for the input of a Bi-GRU model. However, 

SGG pays less attention to the interacting and topological in- 

ormation between atoms in the original molecular graph. ECFP 

epresents many molecular substructures via sparse binary vectors 

ut neglects the topological information compared with the graph- 

ased method. Thus ECFP may not catch the interacting informa- 

ion of the atoms. To better exploit the useful fine-grained frag- 

ents of ECFP, we adopt it as one of the features in the proposed 



X.-b. Ye, Q. Guan, W. Luo et al. Pattern Recognition 128 (2022) 108659 

Table 1 

Summary of 13 benchmark data sets. 

Data set Name Data type Number of compounds 

CHEMBL203 Epidermal growth factor receptor erbB1 SMILES 1794 

CHEMBL267 Tyrosine-protein kinase SRC SMILES 1251 

CHEMBL279 Vascular endothelial growth factor receptor 2 SMILES 3266 

CHEMBL325 Histone deacetylase 1 SMILES 517 

CHEMBL340 Cytochrome P450 3A4 SMILES 3542 

CHEMBL333 Matrix metalloproteinase-2 SMILES 321 

CHEMBL2971 Tyrosine-protein kinase JAK2 SMILES 1582 

CHEMBL2842 Serine/threonine-protein kinase mTOR SMILES 2455 

CHEMBL4005 PI3-kinase p110-alpha subunit SMILES 2232 

HIV Human immuno-deficiency virus SMILES 41 , 913 

BBBP Blood-brain barrier penetration SMILES 2053 

BACE Human β-secretase 1 SMILES 1522 

SIDER Side Effect Resource SMILES 1427 
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. Dataset preparation 

.1. Anti-cancer data sets from ChEMBL 

The anti-cancer active molecules are collected from the ChEMBL 

ata base [18] , which includes some common variables like the 

C50 value, the EC50 value, Inhibition, and the Ki value. The data 

ase uses pChEMBL values to record the relative activity of the 

ompounds, which allows for a number of measurements (i.e., 

alf-maximal response concentration/epotency/affinity) to be com- 

ared in a negative logarithmic scale. According to Lenselink et al. 

27] , pChEMBL = 6 . 5 (approximately 300 nM) is chosen as the deci-

ion boundary. It indicates that a compound with pChEMBL � 6 . 5 

s an inhibitor, otherwise it is a non-inhibitor. In addition, some 

ompounds have multiple legal activity test records, so we aver- 

ge all the legal pChEMBL values for the same compound as a 

elatively reasonable result. To demonstrate the superiority of our 

odel for biomacromolecules containing polycyclic structures, we 

etain molecules containing no less than 5 ring structures in the 

ata set. 

.2. Other benchmark data sets 

.2.1. HIV 

The HIV data set is introduced by the Drug Therapeutics Pro- 

ram (DTP) AIDS Antiviral Screen, which tests the abilities of 41,913 

ompounds to inhibit HIV replication. Original results are divided 

nto three categories: inactive, active, and moderately active. Wu 

t al. [3] combine the latter two classes, making it a binary clas- 

ification task and propose a scaffold splitting for this data set to 

iscover new structures of HIV inhibitors. 

.2.2. BACE 

The BACE data set contains the experimental values collected 

rom the scientific literature over the past decade. It provides bind- 

ng results (binary labels) for the set of inhibitors of BACE-1 [3] . 

.2.3. BBBP 

The Blood-brain barrier penetration (BBBP) data set is collected 

rom the study of modeling and predicting the barrier permeabil- 

ty. 

.2.4. SIDER 

The Side Effect Resource (SIDER) is a data set collected from 

arketed drugs with adverse drug reactions. This data set includes 

2 binary-classification tasks. 

All the above data sets are summarized in Table 1 . We use a

caffold split [3] to divide a data set into three parts: a train- 

ng set, a validation set and a test set (the ratio is 8 : 1 : 1 ). The

caffold split attempt s to discriminate between different molecular 
3 
tructures in the train/validation/test sets, which offers a greater 

hallenge and demands a higher level of generalization ability for 

eep learning models than the random split. In addition, ROC-AUC 

s used for model evaluation. Anti-cancer data sets of 9 targets are 

entioned with the following “ChEMBL” IDs. 

. MSSGAT 

.1. Structural feature extraction for anti-cancer inhibitors 

Traditional machine learning methods usually use molecular 

escriptors (e.g., molecular weight and Alogp) as inputs, but phar- 

acologists usually analyze molecular structures instead of molec- 

lar descriptors. Besides, molecular descriptors may easily neglect 

he local structural information of molecules. Hence molecular de- 

criptors may not provide sufficient classification information. On 

he other hand, a molecular fingerprint is high-dimensional and 

parse. The valid substructure bits in the fingerprint vector are 

parse, and it is difficult to obtain the effective correlation infor- 

ation between the substructures. In recent years, although many 

NN models come out, their input features are just local informa- 

ion of molecular graphs. 

In order to extract structural features for anti-cancer inhibitors, 

e propose a composite feature scheme “raw + tree decomposi- 

ion + ECFP” as follows. 

Raw molecular graph and its descriptors . The raw molecular 

raph is a basic structure of atomic relationships, where each node 

epresents an atom. Each atom has 9 atomic features, which are 

ummarized in Table 2 . The number of charges and the number of 

ree radicals are encoded as integers, while other features are en- 

oded as one-hot vectors. Such raw features are acquired by the 

pen-source chemical information calculation library RDkit [28] . 

he distributions of atom numbers and pChEMBL values of the 

HEMBL340 data set are shown in Fig. 2 . 

Structural features via tree decomposition . In order to extract 

lobal structural features, we adopt the tree decomposition algo- 

ithm for molecular graphs and generate multiple effective sub- 

tructures [15,29,30] . Such a tree-like structure could represent 

he substructural components and the connections between these 

omponents, then we could use the connection trees formed by 

hese substructures to represent the molecules. Substructures are 

egarded as nodes and their connections are regarded as edges. 

ll substructures corresponding to SMILES (namely, token) form 

he vocabulary, and the substructures mapping dictionaries are de- 

ned for each data set. The tree decomposition process is shown 

n Fig. 3 . Word embeddings are initialized by summing up the 

tom embedding vectors in each substructure of the raw molec- 

lar graph from the “raw” branch. The substructural embeddings 

re represented by concatenating word embeddings and one-hot 
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Table 2 

Atomic descriptors for raw molecular graph: initialization of atomic representations of 

molecules. 

Atom feature Feature size Description 

Atom 16 [B, C, N, O, F, Si, P, S, Cl, As, Se, Br, Te, I, At, metal] 

Degree 11 Number of covalent bonds [0,1,2,3,4,5,6,7,8,9,10] 

Formal charge 1 Electrical charge (integer) 

Radical electrons 1 Number of radical electrons (integer) 

Hybridization 6 [sp, sp2, sp3, sp3d, sp3d2, other] 

Aromaticity 1 Aromatic system (0/1) 

Hydrogens 5 Number of connected hydrogens [0,1,2,3,4] 

Chirality 1 Chiral center (0/1) 

Chirality type 2 R/S 

Fig. 2. Distributions of atom numbers and pChEMBL values of CHEMBL340 data set. 
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mbeddings, and the entire connection tree is formed by a matrix 

f these substructural embeddings. 

Extended-connectivity FingerPrints (ECFP) . It is better to repre- 

ent chemical molecules by structural descriptors (e.g., atom-pair 

31] and topological torsion [32] ) besides global descriptors (e.g., 

olecular weight, polar surface area, and logP). Molecular fin- 

erprints provide structural molecular characteristics and improve 

tability and generalization of MSSGAT. We use the Extended- 

onnectivity FingerPrints (ECFP) [16] for MSSGAT, and design some 

articular network blocks to process these features ( Section 4.2.3 ). 

CFP splits the molecule into structural identifiers by the traversal 

ubstructures within a distance from each atom. Then the identi- 

ers are hashed to a vector with a fixed size (See Fig. 4 ). The RDkit

an be used to calculate ECFPs, and the effective diameter and the 

ength of the representation vectors are set as 2 and 512 according 

o Rogers and Hahn [16] , respectively. 

.2. Key modules for MSSGAT 

Now we have 3 types of features: “raw + tree decomposi- 

ion + ECFP”, denoted by { a [ l] } L 
l=1 

, { b 

[ l] } L 
l=1 

and { c [ l] } L 
l=1 

( L is the

umber of samples in a batch), respectively. Then they will be pro- 

essed by MSSGAT to make classifications. MSSGAT mainly consists 

f four modules: several GAC blocks for { a [ l] } L 
l=1 

and { b 

[ l] } L 
l=1 

, a

NN block for { c [ l] } L 
l=1 

, a readout block based on GRU, and a classi-

er based on a multilayer perceptron. After receiving and process- 

ng the above features, the GAC, DNN and readout blocks output 
4 
raph embedding vectors, which are further concatenated as the 

nal embedding vector. This final vector is fed into the classifier 

o get the classification result. The whole framework of the entire 

SSGAT is shown in Fig. 1 . 

.2.1. Graph attention convolutional block 

The existing GCN [33] assigns the same weight to all the neigh- 

oring nodes of the central node, which is not suitable for repre- 

enting molecular structures, because the contributions of different 

toms or clusters to the central atom are different. For example, 

he benzene ring has a different effect from the hydroxyl group on 

he atom C of the carboxyl group in the benzoic acid. Inspired by 

34] , we propose a kind of GAC block to address such different ef- 

ects of different molecular parts. It consists of 3 steps: 

• Calculate the attention coefficient α[ l] 
i j 

. 

• Compute the weighted feature summation h 

[ l] ′ 
i, (K) 

. 

• Implement several post-processing operations to obtain the up- 

dated hidden states. 

Given the initial input of the lth sample z (0) , [ l] containing 

ertices { . . . , h 

[ l] 
i 

, . . . , h 

[ l] 
j 

, . . . } , the attention coefficient is calcu-

ated with a concatenation operator and a single-layer feedforward 

ap: 

 

[ l] 
i j 

= f 

([ 
Wh 

[ l] 
i 
‖ Wh 

[ l] 
j 

] )
, j ∈ N 

[ l] 
i 

, (1) 
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Fig. 3. Tree decomposition process for molecules. The upper black box indicates the initialization of substructural embeddings. 

Fig. 4. Taking the aspirin as an example, if the pre-defined substructures exist, the 

corresponding positions of the ECFP vector are set as 1. 
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[ l] 
i j 

= 

exp 

(
LeakyReLU 

(
e [ l] 

i j 

))

∑ 

m ∈N [ l] 
i 

exp 

(
LeakyReLU 

(
e [ l] 

im 

)) , (2) 

here N 

[ l] 
i 

is the neighboring node set of vertex h 

[ l] 
i 

, W is a shared

arameter of the linear map f that adjusts the features of the 

ertices { . . . , h 

[ l] 
i 

, . . . , h 

[ l] 
j 

, . . . } , and ‖ is the concatenation operator

hat concatenates the dominated terms. Eq. (1) calculates a kind of 

orrelation between vertices h 

[ l] 
i 

and h 

[ l] 
j 

, and (2) normalizes this 

orrelation with the softmax function. Next, the attention coeffi- 

ient α[ l] 
i j 

is used to adjust the importance of the neighboring node. 

oreover, we use a multi-head attention mechanism that includes 

convolution kernels to calculate K new features h 

[ l] ′ 
i, (k ) 

 

[ l] ′ 
i, (k ) 

= 

∑ 

j∈N [ l] 
i 

α[ l] 

i j, (k ) 
W (k ) h 

[ l] 
j 

. (3) 

The eigenvalues produced by the convolution operation easily 

eviate from the normal distribution, thus they have an adverse 

ffect on the convergence of the network (gradient disappearance 

r gradient explosion) and worsen the model performance. There- 
5 
ore, we add a ReLU layer and a Batch Normalization (BN) layer 

fter each convolution kernel in each GAC block 

 

[ l] 

i, (k ) 
= ReLU(h 

[ l] ′ 
i, (k ) 

) , (4) 

 

[ l] ′ 
i, (k ) 

= BN(z [ l] 
i, (k ) 

, { z [ l] 
i, (k ) 

} L l=1 ) . (5) 

hen we concatenate these new features and implement a full con- 

ection F C0 to obtain the updated hidden state z 
(1) , [ l] 
i, (K) 

: 

 

(1) , [ l] 
i, (K) 

= F C0(‖ 

K 
k =1 z 

[ l] ′ 
i, (k ) 

) . (6) 

The architectures of the Graph Attention kernels (named as GA 

elow) and the GAC blocks are shown in Fig. 5 . Furthermore, multi- 

le GAC blocks can be stacked to constitute a deeper network that 

an process molecular parts with more nodes: 

 

(n +1) , [ l] = GAC(z (n ) , [ l] ) , n = 0 , 1 , . . . , N, (7) 

here the subscripts i and (K) can be omitted since they do not 

isturb the operator GAC. Since the raw molecular graph a [ l] usu- 

lly has much more nodes than its structural features via tree de- 

omposition b 

[ l] , we use N GAC blocks for a [ l] while only 1 GAC 

lock for b 

[ l] . Then the number of stacked blocks is consistent with 

he number of nodes, which is beneficial to the convolution perfor- 

ance. The deployments are combined with the readout block in 

he next subsubsection. 

.2.2. Readout block based on gated recurrent units 

Readout operation is similar to the global pooling of CNN, 

hich performs an aggregation operation on the features of all 

odes to output a global representation of the graph. Inspired by 

RU [17] (a variant of an LSTM [35] recurrent network unit), we 

esign a readout block that can synthesize molecular embeddings 

ccording to the order of the GAC blocks. Suppose the hidden state 

f the i th node after the n th GAC block for the lth sample is z 
(n ) , [ l] 
i, (K) 

,

hen the graph embedding is g (n ) , [ l] : 

 

(n ) , [ l] = Mean 

(
z (n ) , [ l] 

i, (K) 
| ∀ v [ l] 

i 
∈ V 

[ l] 
)
, (8) 

here V [ l] is the vertex set of the lth sample. Denote G 

(n +1) , [ l] as 

he molecular embedding after the n th GAC block and GRU 

(n ) as 

he update function at iteration n , then 

 

(0) , [ l] = Mean 

(
f Lin (z (0) , [ l] 

i, (K) 
) | ∀ v [ l] 

i 
∈ V 

[ l] 
)
, (9) 
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Fig. 5. Architectures of Graph Attention Kernel and Graph Attention Convolutional Block. 
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(n +1) , [ l] = GRU 

(n ) 
(
g 

(n ) , [ l] , G 

(n ) , [ l] 
)
, n = 0 , 1 , . . . , N, (10) 

here f Lin is a linear transform for initialization. 

The architecture of the readout block is shown in Fig. 6 . As for

he raw molecular graph a [ l] and its structural features via tree de- 

omposition b 

[ l] , the readout deployments are: 

 

(0) , [ l] ← a [ l] , a [ l] ′ ← G 

(N+1) , [ l] ; (11) 

 

(0) , [ l] ← b 

[ l] , b 

[ l] ′ ← G 

(2) , [ l] . (12) 
t

6 
ote that the notations G 

(N+1) , [ l] and G 

(2) , [ l] here go through differ- 

nt readout progresses because their inputs are different ( a [ l] and 

 

[ l] ). 

If we zoom in the GRU operator (10) and omit the superscript 

 l] without confusion, g (n ) and G 

(n ) first go through the update 

ate u 

(n ) and the reset gate r (n ) : 

 

(n ) = σ
(
W u (n ) g 

(n ) + X u (n ) G 

(n ) 
)
, (13) 

 

(n ) = σ
(
W r (n ) g 

(n ) + X r (n ) G 

(n ) 
)
, (14) 

here W u (n ) , X u (n ) , W r (n ) and X r (n ) are linear transforms to be 

rained for u 

(n ) and r (n ) , respectively. Then the hidden state ˜ G 

(n ) 
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Fig. 6. Readout block based on GRU for MSSGAT. 
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s computed by: 

˜ 
 

(n ) = tanh 

(
W G (n ) g 

(n ) + X G (n ) (r (n ) 
� G 

(n ) ) 
)
, (15) 

here W G (n ) and X G (n ) are linear transforms to be trained, and � is 

he element-wise multiplication. When r (n ) is close to 0 , the cur- 

ent state G 

(n ) would be highly forgotten. The 1st recurrent state is 

n element-wise linear interpolation 

 

(n, 1) = (1 − u 

(n ) ) � G 

(n ) + u 

(n ) 
� ˜ G 

(n ) , (16) 

here the update gate u 

(n ) controls the update strength from the 

urrent embedding G 

(n ) to the hidden state ˜ G 

(n ) . 

We let g (n ) and G 

(n, 1) go through the recurrence (13) –(16) and 

btain G 

(n, 2) , then g (n ) and G 

(n, 2) go through the recurrence... The 

ext molecular embedding is G 

(n +1) � G 

(n,M) , where M is the num- 

er of recurrences. The weights of these two module are updated 

ithin one backward pass. We will conduct experiments to com- 

are the readout modules of LSTM and Concat + FC (concatenating 

he 3 types of features and using a fully connected layer) to prove 

he superiority of our GRU readout module in Section 5.4 . 

.2.3. Deep neural network block for ECFPs 

In order to fully consider the structural molecular characteris- 

ics and improve stability and generalization of MSSGAT, molecu- 

ar fingerprints are necessary as input features, because it is more 

uitable to represent chemical molecules by structural descrip- 

ors (e.g., atom-pair [31] and topological torsion [32] ) rather than 

lobal descriptors (e.g., molecular weight, polar surface area, and 

ogP). The ECFPs are good choices, but they are high-dimensional 

nd sparse vectors where each bit is binary, which will cause the 

imensionality disaster. Therefore, we introduce a pyramid-form 

NN block where the number of neurons is gradually reduced by 

ne-half per layer from the input layer to the output layer, to fur- 

her extract lower-dimensional features from the ECFPs. 

 

[ l] ′ = DN N (c [ l] ) . (17) 

.2.4. Classification block 

We propose a three-layer feedforward classification block for 

SSGAT. The above GAC and DNN blocks produce concatenated 

mbedding features d l � [ a [ l] ′� ; b 

[ l] ′� 
l 

; c 
[ l] ′� 
l 

] � , which are then fed

nto two parallel modules: the fully connected layer 1 (FC1) and 

he wide fully connected layer (FCwide). FCwide provides a feature 

xtraction channel by one fully connected layer directly connecting 

ith high-level features. 

 

BN 
l = BN(d l , { d l } L l=1 ) , (18) 

 

F C1 = F C1(d 

BN ) , (19) 
l l m

7 
 

F Cwide 
l = F Cwide (d 

BN 
l ) . (20) 

he FC1 features would further go through the fully connected 

ayer 2 (FC2) before being concatenated with the FCwide fea- 

ures. 

 

F C1 ,BN 
l 

= BN(d 

F C1 
l , { d 

F C1 
l } L l=1 ) , (21) 

 

F C2 
l = F C2(d 

F C1 ,BN 
l 

) , (22) 

 

f in 

l 
= [ d 

F Cwide � 
l ; d 

F C2 � 
l ] � . (23) 

ith more FC layers, MSSGAT could gather low-level features to 

orm higher-level features for classification. The reasons to con- 

atenate FC2 and FCwide features are: 

• High-level features could capture global information. Simulta- 

neously using low-level and high-level features could improve 

the generalization ability of MSSGAT. 
• The backpropagation of the error terms could get smoother and 

the gradient vanishing problem could be relieved to some ex- 

tent. 

We use the ReLU activation and the dropout technique with 

ropout rate 0.1 in FC1, FC2 and FCwide layers, and use the soft- 

ax function for the output layer: 

p l = 

1 

1 + e −θ� d f in 

l 

, (24) 

here θ is the regression coefficient vector that would be trained 

n the network training, and p l could be seen as the lth sam- 

le probability being an anti-cancer inhibitor. Last, MSSGAT can be 

rained by maximizing the log-likelihood of the observations: 

(Y , P ) = 

L ∑ 

l=1 

(y l log (p l ) + (1 − y l ) log (1 − p l )) , (25) 

here Y = { y l } L l=1 
and P = { p l } L l=1 

are the true probabilities and

he estimated probabilities by MSSGAT for a batch of observa- 

ions being inhibitors, respectively. The diagram of the classifica- 

ion block is shown in Fig. 7 . 

.3. Model summary for MSSGAT 

The model structure and training details for MSSGAT are sum- 

arized as follows: 



X.-b. Ye, Q. Guan, W. Luo et al. Pattern Recognition 128 (2022) 108659 

Fig. 7. Diagram of classification block for MSSGAT. 
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2 https://pytorch.org/ . 
3 https://www.dgl.ai/ . 
4 http://zinc.docking.org . 
• For the raw molecular features α[ l] , we use N = 3 GAC blocks 

and K = 4 graph attention kernels for each GAC block. For the 

structural features via tree decomposition b [ l] , we set N = 2 and 

k = 4 . The sizes of α[ l] and b [ l] are 44 and 128, respectively. We

set 4 as a moderate number of heads for the multi-head atten- 

tion mechanism. 
• The DNN processing ECFPs consists of 1 input layer with 512 

neurons, 1 output layer with 128 neurons, and 2 hidden layers 

with 256 and 128 neurons, respectively. 
• The number of recurrences for the GRU operator is M = 2 . The 

feature sizes of the current graph embedding g (n ) and the cur- 

rent state G 

(n ) are both 128. 
• The classification block consists of 1 input layer with 384 neu- 

rons, 1 FC1 layer with 64 neurons, 1 FC2 layer with 192 neu- 

rons, 1 FCwide layer with 192 neurons, 1 output layer with 64 

neurons, and 1 prediction layer with 2 neurons (to compute the 

probabilities of being an inhibitor and a non-inhibitor, respec- 

tively). 
• The dropout rate for the fully connected layers in the DNN and 

the classification blocks is set as 0.1. 
• The batch size L is set as 256. 
• The initial global learning rate is set as η0 = 0 . 001 . In addition,

to reduce the oscillation of the loss function in the later stage 

of training and make the network converge better, we use an 

exponential decay scheme of learning rate. Hence the learning 

rate for the tth epoch is ηt = η0 γ
t , where γ is set as 0.9. 

• The maximum number of epochs for training is set as 300, but 

we use an early stopping scheme to avoid overfitting and save 

training computation. If the performance of MSSGAT on the val- 

idation set does not improve during a certain number of epochs 

(called the “patience”), the training will be terminated in ad- 

vance and the resulted model will be saved. We set the pa- 

tience as 10 for MSSGAT in our experiments. 

. Experimental results 

We conduct extensive experiments to verify the performance 

f MSSGAT, including ablation studies that analyze the effective- 

ess of each module in MSSGAT. Each data set is scaffold-split into 
8 
hree sets (training, validation, and test). We use ROC-AUC scores 

o evaluate MSSGAT and other competitors, including EAGCN [24] , 

raGAT [25] , MSGG [26] , AttentiveFP [36] , weave [10] , MPNN [37] ,

F [9] , GCN, and GAT. We use three different random seeds in the 

xperiments and average the final results. The hardware platform 

or this work is a Ubuntu 16.04 workstation equipped with an Intel 

ore i9-9820X CPU @ 3.30 GHz × 20, a 64 GB RAM, and an NVIDIA 

eforce RTX 2080 Ti card. The entire MSSGAT is implemented with 

he PyTorch 

2 and the Deep Graph Library 3 frameworks. The model 

arameters are initialized by the Xavier scheme [38] . The Adam 

ptimizer [39] is used for optimization. 

.1. Comparison results on ChEMBL data sets from ChEMBL 

Experimental results on 9 ChEMBL benchmarks are presented 

n Table 3 and the average results are shown in Fig. 8 . In brief,

SSGAT achieves the best average result on all the anti-cancer 

olecule data sets. It significantly outperforms all the competitors 

ith an average ROC-AUC score of 0.8586. Hence the improved fea- 

ures of “raw + tree decomposition + ECFP” provide sufficient and 

seful structural information ranging from single atom features to 

ubstructural features, and finally to cluster features. Besides, the 

AC, DNN and readout blocks effectively process and integrate the 

mproved structural features to achieve better performance. Thus 

SSGAT as a multi-level substructural feature extraction method 

an significantly improve the classification performance of biologi- 

al macromolecules containing polycyclic structures. 

To examine the extendability of MSSGAT, we also train MSS- 

AT by the HIV data set and test it on the ZINC data base. 4 Fig. 9

hows the histogram of ring numbers of the molecules on HIV. It 

ndicates that about 15% are polycyclic molecules (i.e. molecules 

ontaining no less than 5 rings) and 85% are oligocyclic molecules 

i.e. molecules containing less than 5 rings). As for the test set, 

e randomly sample 500 polycyclic molecules for each of the 10 

ost common scaffolds from ZINC, resulting in 50 0 0 polycyclic 

olecules labelled with 10 different scaffolds. Then we use the 

niform Manifold Approximation and Projection (UMAP) [40] to 

isualize the embeddings of these 50 0 0 polycyclic molecules from 

he last embedding layer of MSSGAT, shown in Fig. 10 (a). Although 

here are only a small proportion of training samples are polycyclic 

olecules, the embeddings of the polycyclic molecules in the test 

https://pytorch.org/
https://www.dgl.ai/
http://zinc.docking.org
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Table 3 

Prediction results on 9 ChEMBL data sets for various models. All the models have been tested for 3 times on each test set 

and the average results are presented. The best result on each data set is bold and the second best result is underlined. 

ModelROC-AUCData Set 267 203 340 279 2842 325 333 4005 2971 

NF 0.7403 0.6737 0.5884 0.7110 0.7899 0.6697 0.5827 0.6618 0.6091 

GAT 0.8005 0.8811 0.8283 0.6686 0.8232 0.6234 0.9154 0.8629 0.6434 

GCN 0.7667 0.8238 0.8232 0.8418 0.8214 0.8252 0.8566 0.9009 0.804 

MPNN 0.6728 0.7471 0.7923 0.8043 0.8055 0.6411 0.8194 0.8157 0.7716 

Weave 0.7939 0.8116 0.9269 0.7136 0.7612 0.7350 0.8802 0.8750 0.7273 

AttentiveFP 0.7252 0.7806 0.7949 0.7561 0.7901 0.6986 0.9412 0.8707 0.7351 

EAGCN 0.7576 0.8285 0.8607 0.8021 0.8474 0.8443 0.8297 0.8480 0.8277 

MSGG 0.7230 0.7904 0.8353 0.7746 0.7784 0.7186 0.9113 0.8169 0.7510 

FraGAT 0.7310 0.8236 0.8164 0.7735 0.8661 0.7808 0.9167 0.8074 0.7970 

MSSGAT 0.8125 0.8345 0.8948 0.8162 0.8687 0.9080 0.8915 0.8418 0.8592 

Fig. 9. Histogram of ring numbers of molecules on the HIV data set. There are 6333 

polycyclic (containing no less than 5 rings) and 34794 oligocyclic (containing less 

than 5 rings) molecules, respectively. 
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Fig. 10. Visualization of the molecular embeddings of MSSGAT on the ZINC data 

base. MSSGAT is trained by the HIV data set beforehand. A higher Silhouette index 

indicates a better discrimination. (a) and (b) represent the embeddings of polycyclic 

molecules and oligocyclic molecules, respectively. 

o  

i

n

5

w

t

et are well discriminated with a high Silhouette index [41] . On the 

ther hand, we also sample 50 0 0 oligocyclic molecules from ZINC 

nd visualize their embeddings in the same way as the polycyclic 

olecules, shown in Fig. 10 (b). MSSGAT is relatively less effective 

n oligocyclic molecules with a smaller Silhouette index, since they 

ay not take good advantage of the multi-level molecular sub- 

tructures of MSSGAT. 

.2. Comparison results on 4 benchmark data sets from MoleculeNet 

We use 4 more benchmark data sets (with scaffold split) from 

oleculeNet [3] to verify the generalization ability of MSSGAT, 

hown in Table 4 . MSSGAT achieves the best results on 3 data sets

nd ranks the third on BBBP. It indicates that MSSGAT can effec- 

ively process molecular substructural features and has a good gen- 

ralization ability, since the scaffold split is challenging to the gen- 

ralization ability of a model. 

.3. Training process for MSSGAT 

To analyze the training process of MSSGAT, we show it on the 

raining and validation sets of BACE and BBBP in Fig. 11 . The loss

urves of MSSGAT on the training and validation sets tend to be 

mooth after training for about 50 epochs and 15 epochs, respec- 

ively. The ROC-AUC curves of MSSGAT on both BACE and BBBP are 

lose to 1.0, thus MSSGAT can be efficiently trained. 

To further validate the prediction performance of MSSGAT, we 

se the UMAP to visualize the latent spaces of MSSGAT and MPNN 
9 
n BACE, shown in Fig. 12 . We can see that MSSGAT learns discrim-

native embeddings for inhibitor identification, while MPNN could 

ot separate the two classes well. 

.4. Ablation experiments for MSSGAT 

In order to analyze the contribution of each module to the 

hole MSSGAT, we conduct ablation studies on the HIV and 

he 9 ChEMBL data sets. The HIV data set contains about as 
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Fig. 11. Training Processes of MSSGAT on BACE and BBBP. 

Table 4 

Prediction results on 4 benchmark data sets (with scaffold split) for vari- 

ous models. All the models have been tested for 3 times on each test set 

and the average results are presented. The best result on each data set is 

bold and the second best result is underlined. OOM : Out of Memory. 

ModelROC-AUCData Set BACE SIDER BBBP HIV 

NF 0.6099 0.5173 0.6333 0.6971 

GAT 0.6704 0.5435 0.6583 0.7733 

GCN 0.6132 0.5713 0.6836 0.7770 

MPNN 0.6870 0.5235 0.6723 0.7181 

Weave 0.6440 0.5351 0.6596 0.7457 

AttentiveFP 0.6587 0.5619 0.659971 0.7503 

MSGG 0.8740 0.5278 0.7530 OOM 

EAGCN 0.8337 0.6063 0.8399 0.7497 

FraGAT 0.7896 0.5788 0.6913 0.7341 

MSSGAT 0.8805 0.6170 0.7264 0.7870 

m

p

w

t

a

a

t

Table 5 

Ablation experiments on input features and the readout module 

for MSSGAT on the HIV data set. ROC-AUC scores are used in 

evaluation. 

Model Validation Test 

MSSGAT 0 . 8209 ± 0 . 025 0 . 7828 ± 0 . 020 

Tree-only 0 . 8034 ± 0 . 003 0 . 7540 ± 0 . 004 

Raw-only 0 . 8038 ± 0 . 007 0 . 7663 ± 0 . 010 

ECFP-only 0 . 7598 ± 0 . 001 0 . 7184 ± 0 . 002 

MSSGAT(GRU) 0 . 8209 ± 0 . 025 0 . 7828 ± 0 . 020 

MSSGAT(LSTM) 0 . 8197 ± 0 . 011 0 . 7547 ± 0 . 021 

MSSGAT(Concat + FC) 0 . 7915 ± 0 . 017 0 . 7451 ± 0 . 021 

L

G

e

i

t

m

a

[

b

k

any as 40 thousand samples, thus it is reliable for ablation ex- 

eriments. The results in Table 5 show that MSSGAT with the 

hole “raw + tree decomposition + ECFP” features outperforms 

he single ECFP module, the single tree decomposition module 

nd the single raw molecular graph module on the validation 

nd the test sets. Next, we retain our “raw + tree decomposi- 

ion + ECFP” features but try different readout modules (GRU, 
10 
STM, and Concat + FC). The results in Table 5 indicate that our 

RU readout module outperforms other readout modules to some 

xtent. 

To further examine whether tree decomposition is effective 

n extracting substructural features from molecules or other ex- 

raction methods could be better, we adopt a common frag- 

entation algorithm rdkit.Chem.Fragmentonbonds [28] in RDkit for 

blation experiments. Similar to the fragmentation in FraGAT 

25] , we retain all ring structures and break all acyclic single 

onds to obtain the corresponding fragments by the function rd- 

it.Chem.Fragmentonbonds , and substitute these fragments for the 
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Table 6 

Ablation experiments on feature extraction methods for MSSGAT on 9 ChEMBL data sets. ROC-AUC scores are used in evaluation. The 

best result on each data set is bold and the second best result is underlined. “AVG” indicates the average ROC-AUC score of a model on 

9 ChEMBL data sets. MSSGAT a : MSSGAT with tree decomposition features. MSSGAT b : MSSGAT with common fragmentation features. 

ModelROC-AUCData Set 267 203 340 279 2842 325 333 4005 2971 AVG 

MSSGAT a (Ours) 0.8125 0.8345 0.8948 0.8162 0.8687 0.9080 0.8915 0.8418 0.8592 0.8586 

MSSGAT b 0.8079 0.8169 0.8682 0.8266 0.8518 0.8387 0.9192 0.8523 0.8153 0.8441 

Tree-only 0.8054 0.7766 0.8865 0.7723 0.8342 0.7845 0.9135 0.833 0.7540 0.8178 

Raw-only 0.8135 0.8138 0.8698 0.7567 0.8041 0.7448 0.9549 0.7695 0.7877 0.8128 

ECFP-only 0.7543 0.7955 0.8295 0.8157 0.8477 0.7759 0.855 0.8451 0.7911 0.8122 

Fig. 12. Latent space visualizations via UMAP for MSSGAT (Upper) and MPNN 

(Lower) on BACE. A higher Silhouette index indicates a better discrimination. 
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11 
ree decomposition features in MSSGAT. We denote our default 

SSGAT with tree decomposition features and the altered MSS- 

AT with the common fragmentation features as MSSGAT a and 

SSGAT b , respectively. The results on the 9 ChEMBL data sets in 

able 6 show that MSSGAT a outperforms MSSGAT b in most cases. 

e also visualize the fragment features of MSSGAT a and MSSGAT b 

n Fig. 13 , which indicate that MSSGAT a provides more fragments 

nd finer segmentations than MSSGAT b . This may be the reason 

hy MSSGAT a is better than MSSGAT b . To summarize this subsec- 

ion, MSSGAT is effective in expoiting multi-level molecular sub- 

tructures from the proposed “raw + tree decomposition + ECFP”

eatures according to the above ablation experiments. 

.5. Important structure visualization 

To further explore what information MSSGAT can provide on 

olecular structures, we visualize some molecules on the BACE 

ata set and label the most important structures according to the 

ttention scores (weights) in the prediction step of MSSGAT. Specif- 

cally, We extract the attention scores from the last GAC block of 

he “tree decomposition” branch of the well-trained MSSGAT. Then 

e sort the attention scores of all the tree nodes, and visualized 

he largest one (colored orange in Fig. 14 ). It indicates that MSS- 

AT allocates major attention to some common structures (e.g., 

arbon-oxygen double bonds, fluorine atoms and structures with 

mmonia), which may be an interesting reference for drug design- 

rs from a different perspective of machine learning. 

. Conclusion 

In this work, we develop a novel Molecular SubStructure Graph 

Ttention (MSSGAT) network to capture substructural interact- 

ng information with structural feature extraction including raw 

olecular graphs, tree decomposition features, and Extended- 

onnectivity FingerPrints (ECFP). MSSGAT consists of several GAC, 

NN and readout blocks that could effectively process molecu- 

ar structural features and exploit the relationships between dif- 

erent molecular cliques of tree decomposition. Furthermore, MSS- 

AT uses both low-level and high-level features in classification to 

mprove generalization ability, and adopts the dropout technique 

o relieve the gradient vanishing problem. Experimental results 

how that MSSGAT outperforms other state-of-the-art competi- 

ors in most cases. MSSGAT could also reveal important molecular 

tructures by examining the attention scores, which gives a refer- 

nce for drug designers from the perspective of machine learning. 

n summary, MSSGAT is an effective tool for molecular property 

dentification and worth further investigations. Since MSSGAT is 

esigned mainly for large and polycyclic molecules, it is relatively 

ess effective in oligocyclic molecules. Future works could be de- 

igning different models for molecules with different sizes or find- 

ng more general molecular features for molecules with different 

ubstructures. 
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Fig. 13. Fragment features for: (a) MSSGAT a . (b) MSSGAT b . 

Fig. 14. Important structure visualization on the BACE data set. The atoms in orange represent the most important components indicated by MSSGAT. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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