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Molecular machine learning based on graph neural network has a broad prospect in molecular prop-
erty identification in drug discovery. Molecules contain many types of substructures that may affect their
properties. However, conventional methods based on graph neural networks only consider the interac-
tion information between nodes, which may lead to the oversmoothing problem in the multi-hop oper-
ations. These methods may not efficiently express the interacting information between molecular sub-
structures. Hence, We develop a Molecular SubStructure Graph ATtention (MSSGAT) network to capture
the interacting substructural information, which constructs a composite molecular representation with
multi-substructural feature extraction and processes such features effectively with a nested convolution
plus readout scheme. We evaluate the performance of our model on 13 benchmark data sets, in which 9
data sets are from the ChEMBL data base and 4 are the SIDER, BBBP, BACE, and HIV data sets. Extensive
experimental results show that MSSGAT achieves the best results on most of the data sets compared with
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other state-of-the-art methods.
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1. Introduction

Drug discovery is time-consuming, labor intensive, and expen-
sive. It usually starts with experimental discoveries of molecules
and targets (i.e., de novo drug design) and the validations with in
vitro experiments on cell lines and animals before moving to clin-
ical tests [1]. The entire process from the discovery to the regula-
tory approval of a new drug can take as long as 12 years and cost
upwards of US 2.8 billion. Furthermore, each drug developing stage
has a very low success rate of about 1/5000.

Drug discovery is equipped with statistical learning since the
rise of computational chemistry. In order to increase the speed
of drug screening and reduce costs, researchers in cheminformat-
ics have been building quantitative structure activity relationships
(QSAR) via machine learning methods [2,3]. In recent years, with
increasing biochemistry data volumes and advanced computing
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machines (e.g., Graphics Processing Unit, GPU), a large number
of deep learning methods are applied to drug discovery because
of their powerful capability of feature extraction and flexibility
of model structures compared with conventional machine learn-
ing methods [4,5]. Due to the particularity of compound structures
and the limitations of early-era feature engineering (e.g., molecular
fingerprints, descriptors, and Simplified Molecular-Input Line-Entry
System strings, SMILES [6G]), it is difficult for conventional neural
networks to extract compound substructural information from raw
molecules.

The emergence of graph convolutional networks (GCN) brings in
a new breakthrough in drug-related tasks [7]. Niepert et al. [8] pro-
pose a general method to extract local information from graph
data and apply it to the activity prediction of compound molecules.
Structural representation of compound molecules is encoded as a
molecular fingerprint, a high dimensional vector of binary digits.
Duvenaud et al. [9] use a GCN to obtain molecular fingerprints and
apply it to molecular property prediction. Kearnes et al. [10] de-
velop a GCN called “weave module”, which can aggregate the atom
and bond information as node features, and apply it to activity pre-
diction. Zhang et al. [11] propose a graph neural network based
on the graph structure GSCN, which balances between the impor-
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Fig. 1. Entire structure of MSSGAT.

tance of graph structural information and the node neighboring in-
formation. Since molecular property prediction is on the level of
the entire compound structure, Herr et al. [12] propose the entire
graph-level representation learning, which is shown to be effective
by the experiments. Ding et al. [13] learn the graph-level repre-
sentation by combining the depth-first-search algorithm with their
node selection strategy on the features of local structures. Fang
et al. [14] introduce a structured multi-head self-attention mech-
anism to obtain the graph-level representation of the fused graph
structural information.

Although there are a large number of GNNs and GCNs han-
dling molecular structures, these conventional methods only con-
sider the interaction information between nodes, which may suf-
fer from the oversmoothing problem of multi-hop operations. They
seldom take molecular substructures into consideration, but the in-
teracting information between substructures is crucial to molecu-
lar properties. Consequently, the molecular substructural informa-
tion is not fully utilized, especially for biomacromolecules contain-
ing polycyclic structures. To fill this gap, we propose a Molecu-
lar SubStructure Graph ATtention (MSSGAT) network, whose entire
structure is shown in Fig. 1. The main contributions can be sum-
marized as follows: 1. We propose to use a structural feature ex-
traction scheme including 3 types of features (raw + tree decom-
position + ECFP): raw molecular graphs, molecular structural fea-
tures via tree decomposition [15], and Extended-Connectivity Fin-
gerPrints (ECFP) [16]. 2. We design a framework including several
graph attention convolutional (GAC) blocks and deep neural net-
work (DNN) blocks to process the above structural features. We
also improve the GAC blocks to relieve the gradient vanishing or
exploding problem. 3. We design a readout block based on gated
recurrent units (GRU) [17]. The readout blocks collaborate with the
GAC blocks in a nested architecture to obtain molecular embed-
dings. 4. We visualize the molecules and mark the most impor-
tant atoms with the attention scores produced by MSSGAT, which
can be a good reference for subsequent researches by medicinal
chemists. We evaluate the performance of MSSGAT on 13 bench-
mark data sets, in which 9 are from the ChEMBL data base [18] and
4 are the SIDER [3], BBBP [3], BACE [3], and HIV [3] data sets. Ex-
tensive experimental results show that MSSGAT achieves the best
results on most of the data sets compared with other state-of-the-
art methods.

2. Related works

Due to the establishment of drug data bases, methods based
on deep learning have caught more attention in the pharmaceuti-
cal industry. First, DNN has been widely used in the quantitative
structure activity relationship (QSAR). Ma et al. [19] use experi-
ments to verify that QSAR models based on DNNs are better than

some traditional machine learning models (the random forest and
the support vector machine). You et al. [20] show that DNNs are
effective in predicting drug-target pairs and can be used for drug
repurposing. Li et al. [21] use a multi-task DNNs model to predict
human cytochrome P450 inhibitors, and the results show that the
multi-task model has a better predictive effect than several tradi-
tional machine learning models (SVM, KNN, the decision tree, and
the logistic regression).

Accelerating the speed of virtual screening and accurately cap-
turing compounds that interact with the targets have been hot
spots in drug research in recent years. The emergence of Gen-
erative Adversarial Networks (GAN) [22] provides new ideas for
speeding up the research of virtual drug screening. Kadurin et al.
[23] adopt the anti-autoencoding (AAE) network structure, and use
NCI-60 cell line assay data for 6252 compounds to train the net-
work. The output of the network is used to search the pubchem
data base and screen out candidates with anticancer activities.
AAEs can be used to generate new molecular fingerprints that have
specific molecular characteristics.

Recently, some GCNs have been applied to the property pre-
diction for small molecules. They mainly consider the interacting
information between nodes, which is indicated by the adjacency
matrix of the molecular graph. However, traditional GCNs may ne-
glect the fact that chemical bonds (edges) in different molecules
can be similar if the interatomic distances are similar. To address
this problem, Shang et al. [24] develop an Edge-Aware multi-view
spectral GCN (EAGCN) approach to enhance the property predic-
tion for small molecules.

Nevertheless, existing graph-based models may neglect the in-
teracting information between molecular substructures, which also
influences the molecular property based on the knowledge of
chemistry. Zhang et al. [25] develop a fragment-oriented GAT (Fra-
GAT) to boost the interaction between fragments of molecular
graphs, which may retain functional groups. FraGAT also aggregates
the atom-level features to represent the molecular graph. How-
ever, if most rings are partitioned into the same fragment, Fra-
GAT may deteriorate in macromolecules like polycyclic molecules
(i.e., molecules containing no less than 5 rings), because the topo-
logical information between rings is not fully utilized. Similarly,
the RNN-based MSGG model [26] transforms a molecule into a
substructure-based graph. Then this graph is expanded into three-
channel sequences for the input of a Bi-GRU model. However,
MSGG pays less attention to the interacting and topological in-
formation between atoms in the original molecular graph. ECFP
represents many molecular substructures via sparse binary vectors
but neglects the topological information compared with the graph-
based method. Thus ECFP may not catch the interacting informa-
tion of the atoms. To better exploit the useful fine-grained frag-
ments of ECFP, we adopt it as one of the features in the proposed
MSSGAT.
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Table 1
Summary of 13 benchmark data sets.
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Data set Name

Data type ~ Number of compounds

CHEMBL203

Epidermal growth factor receptor erbB1

SMILES 1794

CHEMBL267 Tyrosine-protein kinase SRC SMILES 1251
CHEMBL279 Vascular endothelial growth factor receptor 2~ SMILES 3266
CHEMBL325 Histone deacetylase 1 SMILES 517
CHEMBL340 Cytochrome P450 3A4 SMILES 3542
CHEMBL333 Matrix metalloproteinase-2 SMILES 321
CHEMBL2971  Tyrosine-protein kinase JAK2 SMILES 1582
CHEMBL2842 Serine/threonine-protein kinase mTOR SMILES 2455
CHEMBL4005 PI3-kinase p110-alpha subunit SMILES 2232
HIV Human immuno-deficiency virus SMILES 41,913
BBBP Blood-brain barrier penetration SMILES 2053
BACE Human S-secretase 1 SMILES 1522
SIDER Side Effect Resource SMILES 1427

3. Dataset preparation
3.1. Anti-cancer data sets from ChEMBL

The anti-cancer active molecules are collected from the ChEMBL
data base [18], which includes some common variables like the
IC50 value, the EC50 value, Inhibition, and the Ki value. The data
base uses pChEMBL values to record the relative activity of the
compounds, which allows for a number of measurements (i.e.,
half-maximal response concentration/epotency/affinity) to be com-
pared in a negative logarithmic scale. According to Lenselink et al.
[27], pPChEMBL = 6.5 (approximately 300nM) is chosen as the deci-
sion boundary. It indicates that a compound with pChEMBL > 6.5
is an inhibitor, otherwise it is a non-inhibitor. In addition, some
compounds have multiple legal activity test records, so we aver-
age all the legal pChEMBL values for the same compound as a
relatively reasonable result. To demonstrate the superiority of our
model for biomacromolecules containing polycyclic structures, we
retain molecules containing no less than 5 ring structures in the
data set.

3.2. Other benchmark data sets

3.2.1. HIV

The HIV data set is introduced by the Drug Therapeutics Pro-
gram (DTP) AIDS Antiviral Screen, which tests the abilities of 41,913
compounds to inhibit HIV replication. Original results are divided
into three categories: inactive, active, and moderately active. Wu
et al. [3] combine the latter two classes, making it a binary clas-
sification task and propose a scaffold splitting for this data set to
discover new structures of HIV inhibitors.

3.2.2. BACE

The BACE data set contains the experimental values collected
from the scientific literature over the past decade. It provides bind-
ing results (binary labels) for the set of inhibitors of BACE-1 [3].

3.2.3. BBBP

The Blood-brain barrier penetration (BBBP) data set is collected
from the study of modeling and predicting the barrier permeabil-
ity.

3.2.4. SIDER

The Side Effect Resource (SIDER) is a data set collected from
marketed drugs with adverse drug reactions. This data set includes
12 binary-classification tasks.

All the above data sets are summarized in Table 1. We use a
scaffold split [3] to divide a data set into three parts: a train-
ing set, a validation set and a test set (the ratio is 8 : 1:1). The
scaffold split attempts to discriminate between different molecular

structures in the train/validation/test sets, which offers a greater
challenge and demands a higher level of generalization ability for
deep learning models than the random split. In addition, ROC-AUC
is used for model evaluation. Anti-cancer data sets of 9 targets are
mentioned with the following “ChEMBL” IDs.

4. MSSGAT
4.1. Structural feature extraction for anti-cancer inhibitors

Traditional machine learning methods usually use molecular
descriptors (e.g., molecular weight and Alogp) as inputs, but phar-
macologists usually analyze molecular structures instead of molec-
ular descriptors. Besides, molecular descriptors may easily neglect
the local structural information of molecules. Hence molecular de-
scriptors may not provide sufficient classification information. On
the other hand, a molecular fingerprint is high-dimensional and
sparse. The valid substructure bits in the fingerprint vector are
sparse, and it is difficult to obtain the effective correlation infor-
mation between the substructures. In recent years, although many
GNN models come out, their input features are just local informa-
tion of molecular graphs.

In order to extract structural features for anti-cancer inhibitors,
we propose a composite feature scheme “raw + tree decomposi-
tion + ECFP” as follows.

Raw molecular graph and its descriptors. The raw molecular
graph is a basic structure of atomic relationships, where each node
represents an atom. Each atom has 9 atomic features, which are
summarized in Table 2. The number of charges and the number of
free radicals are encoded as integers, while other features are en-
coded as one-hot vectors. Such raw features are acquired by the
open-source chemical information calculation library RDkit [28].
The distributions of atom numbers and pChEMBL values of the
CHEMBL340 data set are shown in Fig. 2.

Structural features via tree decomposition. In order to extract
global structural features, we adopt the tree decomposition algo-
rithm for molecular graphs and generate multiple effective sub-
structures [15,29,30]. Such a tree-like structure could represent
the substructural components and the connections between these
components, then we could use the connection trees formed by
these substructures to represent the molecules. Substructures are
regarded as nodes and their connections are regarded as edges.
All substructures corresponding to SMILES (namely, token) form
the vocabulary, and the substructures mapping dictionaries are de-
fined for each data set. The tree decomposition process is shown
in Fig. 3. Word embeddings are initialized by summing up the
atom embedding vectors in each substructure of the raw molec-
ular graph from the “raw” branch. The substructural embeddings
are represented by concatenating word embeddings and one-hot
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Atomic descriptors for raw molecular graph: initialization of atomic representations of

molecules.

Atom feature Feature size

Description

Atom 16
Degree 11
Formal charge 1

Radical electrons 1
Hybridization 6
Aromaticity 1
Hydrogens 5
Chirality 1

2

Chirality type R/S

[B,C, N, O, F Si, P, S, Cl, As, Se, Br, Te, I, At, metal]
Number of covalent bonds [0,1,2,3,4,5,6,7,8,9,10]
Electrical charge (integer)

Number of radical electrons (integer)

[sp, sp2, sp3, sp3d, sp3d2, other]

Aromatic system (0/1)

Number of connected hydrogens [0,1,2,3,4]

Chiral center (0/1)

Atom Number Distribution of CHEMBL340
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Fig. 2. Distributions of atom numbers and pChEMBL values of CHEMBL340 data set.

embeddings, and the entire connection tree is formed by a matrix
of these substructural embeddings.

Extended-connectivity FingerPrints (ECFP). It is better to repre-
sent chemical molecules by structural descriptors (e.g., atom-pair
[31] and topological torsion [32]) besides global descriptors (e.g.,
molecular weight, polar surface area, and logP). Molecular fin-
gerprints provide structural molecular characteristics and improve
stability and generalization of MSSGAT. We use the Extended-
Connectivity FingerPrints (ECFP) [16] for MSSGAT, and design some
particular network blocks to process these features (Section 4.2.3).
ECFP splits the molecule into structural identifiers by the traversal
substructures within a distance from each atom. Then the identi-
fiers are hashed to a vector with a fixed size (See Fig. 4). The RDkit
can be used to calculate ECFPs, and the effective diameter and the
length of the representation vectors are set as 2 and 512 according
to Rogers and Hahn [16], respectively.

4.2. Key modules for MSSGAT

Now we have 3 types of features: “raw + tree decomposi-
tion + ECFP”, denoted by {al'l}t_,, {bl"l}}_, and {cM}}_ (L is the
number of samples in a batch), respectively. Then they will be pro-
cessed by MSSGAT to make classifications. MSSGAT mainly consists
of four modules: several GAC blocks for {al'l}}_ and {bll}} , a
DNN block for {c!}}_, a readout block based on GRU, and a classi-
fier based on a multilayer perceptron. After receiving and process-
ing the above features, the GAC, DNN and readout blocks output

graph embedding vectors, which are further concatenated as the
final embedding vector. This final vector is fed into the classifier
to get the classification result. The whole framework of the entire
MSSGAT is shown in Fig. 1.

4.2.1. Graph attention convolutional block

The existing GCN [33] assigns the same weight to all the neigh-
boring nodes of the central node, which is not suitable for repre-
senting molecular structures, because the contributions of different
atoms or clusters to the central atom are different. For example,
the benzene ring has a different effect from the hydroxyl group on
the atom C of the carboxyl group in the benzoic acid. Inspired by
[34], we propose a kind of GAC block to address such different ef-
fects of different molecular parts. It consists of 3 steps:

 Calculate the attention coefficient ai[Jl.].
o Compute the weighted feature summation h%().
o Implement several post-processing operations to obtain the up-

dated hidden states.

Given the initial input of the Ith sample z(®:l containing
vertices {...,hy],...,hy],...}, the attention coefficient is calcu-
lated with a concatenation operator and a single-layer feedforward
map:

elll = f([WhE,”HWhg.”]), jenih (1)
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Molecule Tree

Fig. 3. Tree decomposition process for molecules. The upper black box indicates the initialization of substructural embeddings.
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Fig. 4. Taking the aspirin as an example, if the pre-defined substructures exist, the
corresponding positions of the ECFP vector are set as 1.

exp( LeakyReLU (eg.]))
> me I EXP ( LeakyReLU (eﬂ))

where N’l.[” is the neighboring node set of vertex hI[,”, W is a shared
parameter of the linear map f that adjusts the features of the
vertices {...,h,[”,...,hg”,...}, and || is the concatenation operator
that concatenates the dominated terms. Eq. (1) calculates a kind of
correlation between vertices hg” and h[j”, and (2) normalizes this
correlation with the softmax function. Next, the attention coeffi-
cient ai[}] is used to adjust the importance of the neighboring node.
Moreover, we use a multi-head attention mechanism that includes

K convolution kernels to calculate K new features h%)

[ _ [1] [1]
hi G = Z o' Wby (3)
jEJ\/i[I]

0 _
ij

(2)

o

The eigenvalues produced by the convolution operation easily
deviate from the normal distribution, thus they have an adverse
effect on the convergence of the network (gradient disappearance
or gradient explosion) and worsen the model performance. There-

fore, we add a ReLU layer and a Batch Normalization (BN) layer
after each convolution kernel in each GAC block

21y = RelU (). )

[ _ [1] [ L
z; 4 = BN(z; ) {Z; 4 }121)- (5)

Then we concatenate these new features and implement a full con-

nection FCO to obtain the updated hidden state zi(l(;('y]:

1),[1 1
z;(;(gl = FCO(| ;lez,l,g;{)). (6)

The architectures of the Graph Attention kernels (named as GA
below) and the GAC blocks are shown in Fig. 5. Furthermore, multi-
ple GAC blocks can be stacked to constitute a deeper network that
can process molecular parts with more nodes:

2O = GACz™y, n=0,1,...,N, (7)

where the subscripts i and (K) can be omitted since they do not
disturb the operator GAC. Since the raw molecular graph al!l usu-
ally has much more nodes than its structural features via tree de-
composition bl'l, we use N GAC blocks for al'l while only 1 GAC
block for bl!l. Then the number of stacked blocks is consistent with
the number of nodes, which is beneficial to the convolution perfor-
mance. The deployments are combined with the readout block in
the next subsubsection.

4.2.2. Readout block based on gated recurrent units

Readout operation is similar to the global pooling of CNN,
which performs an aggregation operation on the features of all
nodes to output a global representation of the graph. Inspired by
GRU [17] (a variant of an LSTM [35] recurrent network unit), we
design a readout block that can synthesize molecular embeddings
according to the order of the GAC blocks. Suppose the hidden state
of the ith node after the nth GAC block for the Ith sample is zi(_'}kg”,
then the graph embedding is g(™-[!l:
g™l = Mean (Zi(_'z;(’)[” | Vol V[”), (8)
where VIl is the vertex set of the Ith sample. Denote G+l a5
the molecular embedding after the nth GAC block and GRU™ as
the update function at iteration n, then

COIl _ Mean(f”" (Zig.(z;(,)[l]) | Vvl[l] c vl”), (9)
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Note that the notations GN+D:lll and G@-l! here go through differ-
ir i - (1
G+ _ CRU™ (g(")*“], G(")*[”), n—0.1.. N (10) I(;E]t).realdout progresses because their inputs are different (a!'! and
If we zoom in the GRU operator (10) and omit the superscript
[I] without confusion, g™ and G™ first go through the update
gate u™ and the reset gate r™:

where fLi" is a linear transform for initialization.

The architecture of the readout block is shown in Fig. 6. As for
the raw molecular graph al'l and its structural features via tree de-
composition bl!l, the readout deployments are: u® =0 (Wywg™ + Xy G™), (13)

zO.1 a[l]’ alll — G(N+1)~[l]; (11)
l'(n) = G(W,(..)g(") + X,m)G(”)), (14)

where W), X, m), Wym and X, are linear transforms to be

0).1! ! ! 2.1 N
O —pll, pl < g, (12) trained for u™ and r™, respectively. Then the hidden state G(™
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is computed by:
G¢™ — tanh (WG(")g(n) + Xgm (r(n) o) G("))), (15) dFCw:de FCWlde(dBN) (20)

where W, and X, are linear transforms to be trained, and © is
the element-wise multiplication. When r®™ is close to 0, the cur-
rent state G would be highly forgotten. The 1st recurrent state is
an element-wise linear interpolation

G™D =1 -u") 6™ +u™ o 6M, (16)

where the update gate u(™ controls the update strength from the
current embedding G™ to the hidden state G(™.

We let g™ and G go through the recurrence (13)-(16) and
obtain G(™2), then g™ and G2 go through the recurrence... The
next molecular embedding is G*+1) 2 GMM) where M is the num-
ber of recurrences. The weights of these two module are updated
within one backward pass. We will conduct experiments to com-
pare the readout modules of LSTM and Concat + FC (concatenating
the 3 types of features and using a fully connected layer) to prove
the superiority of our GRU readout module in Section 5.4.

4.2.3. Deep neural network block for ECFPs

In order to fully consider the structural molecular characteris-
tics and improve stability and generalization of MSSGAT, molecu-
lar fingerprints are necessary as input features, because it is more
suitable to represent chemical molecules by structural descrip-
tors (e.g., atom-pair [31] and topological torsion [32]) rather than
global descriptors (e.g., molecular weight, polar surface area, and
logP). The ECFPs are good choices, but they are high-dimensional
and sparse vectors where each bit is binary, which will cause the
dimensionality disaster. Therefore, we introduce a pyramid-form
DNN block where the number of neurons is gradually reduced by
one-half per layer from the input layer to the output layer, to fur-
ther extract lower-dimensional features from the ECFPs.

clV = DNN(cly. (17)

4.2.4. Classification block

We propose a three-layer feedforward classification block for
MSSGAT. The above GAC and DNN blocks produce concatenated
embedding features d; 2 [al!/T; b'V; !V T]T, which are then fed
into two parallel modules: the fully connected layer 1 (FC1) and
the wide fully connected layer (FCwide). FCwide provides a feature
extraction channel by one fully connected layer directly connecting
with high-level features.

dN = BN(d,. {d;}[_)). (18)

df< = FC1(dB), (19)

The FC1 features would further go through the fully connected
layer 2 (FC2) before being concatenated with the FCwide fea-
tures.

diCTEN — BN (dFCT {dFCTYE ), (21)
dre? — FCo(dfC1 o), (22)
df" — [dfevideT, greT T (23)

With more FC layers, MSSGAT could gather low-level features to
form higher-level features for classification. The reasons to con-
catenate FC2 and FCwide features are:

o High-level features could capture global information. Simulta-
neously using low-level and high-level features could improve
the generalization ability of MSSGAT.

o The backpropagation of the error terms could get smoother and
the gradient vanishing problem could be relieved to some ex-
tent.

We use the RelU activation and the dropout technique with
dropout rate 0.1 in FC1, FC2 and FCwide layers, and use the soft-
max function for the output layer:

1
pl=—— (24)
T4ed0'd
where 6 is the regression coefficient vector that would be trained
in the network training, and p; could be seen as the Ith sam-
ple probability being an anti-cancer inhibitor. Last, MSSGAT can be
trained by maximizing the log-likelihood of the observations:

L
> ilog(p) + (1 —y)log(1 - py)), (25)

=1

I, P) =

where Y = {y,} and P = {pl}L are the true probabilities and
the estimated probabllltles by MSSGAT for a batch of observa-
tions being inhibitors, respectively. The diagram of the classifica-
tion block is shown in Fig. 7.

4.3. Model summary for MSSGAT

The model structure and training details for MSSGAT are sum-
marized as follows:
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Fig. 7. Diagram of classification block for MSSGAT.

For the raw molecular features al!l, we use N =3 GAC blocks
and K = 4 graph attention kernels for each GAC block. For the
structural features via tree decomposition bl we set N =2 and
k = 4. The sizes of e!!! and b'"! are 44 and 128, respectively. We
set 4 as a moderate number of heads for the multi-head atten-
tion mechanism.

The DNN processing ECFPs consists of 1 input layer with 512
neurons, 1 output layer with 128 neurons, and 2 hidden layers
with 256 and 128 neurons, respectively.

The number of recurrences for the GRU operator is M = 2. The
feature sizes of the current graph embedding g™ and the cur-
rent state G(™ are both 128.

The classification block consists of 1 input layer with 384 neu-
rons, 1 FC1 layer with 64 neurons, 1 FC2 layer with 192 neu-
rons, 1 FCwide layer with 192 neurons, 1 output layer with 64
neurons, and 1 prediction layer with 2 neurons (to compute the
probabilities of being an inhibitor and a non-inhibitor, respec-
tively).

The dropout rate for the fully connected layers in the DNN and
the classification blocks is set as 0.1.

The batch size L is set as 256.

The initial global learning rate is set as 1y = 0.001. In addition,
to reduce the oscillation of the loss function in the later stage
of training and make the network converge better, we use an
exponential decay scheme of learning rate. Hence the learning
rate for the tth epoch is n; = ngyt, where y is set as 0.9.

The maximum number of epochs for training is set as 300, but
we use an early stopping scheme to avoid overfitting and save
training computation. If the performance of MSSGAT on the val-
idation set does not improve during a certain number of epochs
(called the “patience”), the training will be terminated in ad-
vance and the resulted model will be saved. We set the pa-
tience as 10 for MSSGAT in our experiments.

5. Experimental results

We conduct extensive experiments to verify the performance
of MSSGAT, including ablation studies that analyze the effective-
ness of each module in MSSGAT. Each data set is scaffold-split into
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Performance of different model on ChEMBL data set with more than 5 rings
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Fig. 8. Average ROC-AUCs on 9 ChEMBL data sets for different models.

three sets (training, validation, and test). We use ROC-AUC scores
to evaluate MSSGAT and other competitors, including EAGCN [24],
FraGAT [25], MSGG [26], AttentiveFP [36], weave [10], MPNN [37],
NF [9], GCN, and GAT. We use three different random seeds in the
experiments and average the final results. The hardware platform
for this work is a Ubuntu 16.04 workstation equipped with an Intel
Core 19-9820X CPU @ 3.30 GHz x 20, a 64 GB RAM, and an NVIDIA
Geforce RTX 2080 Ti card. The entire MSSGAT is implemented with
the PyTorch? and the Deep Graph Library> frameworks. The model
parameters are initialized by the Xavier scheme [38]. The Adam
optimizer [39] is used for optimization.

5.1. Comparison results on ChEMBL data sets from ChEMBL

Experimental results on 9 ChEMBL benchmarks are presented
in Table 3 and the average results are shown in Fig. 8. In brief,
MSSGAT achieves the best average result on all the anti-cancer
molecule data sets. It significantly outperforms all the competitors
with an average ROC-AUC score of 0.8586. Hence the improved fea-
tures of “raw + tree decomposition + ECFP” provide sufficient and
useful structural information ranging from single atom features to
substructural features, and finally to cluster features. Besides, the
GAC, DNN and readout blocks effectively process and integrate the
improved structural features to achieve better performance. Thus
MSSGAT as a multi-level substructural feature extraction method
can significantly improve the classification performance of biologi-
cal macromolecules containing polycyclic structures.

To examine the extendability of MSSGAT, we also train MSS-
GAT by the HIV data set and test it on the ZINC data base.* Fig. 9
shows the histogram of ring numbers of the molecules on HIV. It
indicates that about 15% are polycyclic molecules (i.e. molecules
containing no less than 5 rings) and 85% are oligocyclic molecules
(i.e. molecules containing less than 5 rings). As for the test set,
we randomly sample 500 polycyclic molecules for each of the 10
most common scaffolds from ZINC, resulting in 5000 polycyclic
molecules labelled with 10 different scaffolds. Then we use the
Uniform Manifold Approximation and Projection (UMAP) [40] to
visualize the embeddings of these 5000 polycyclic molecules from
the last embedding layer of MSSGAT, shown in Fig. 10(a). Although
there are only a small proportion of training samples are polycyclic
molecules, the embeddings of the polycyclic molecules in the test

2 https://pytorch.org/.
3 https://www.dgl.ai/.
4 http://zinc.docking.org.
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Table 3

Prediction results on 9 ChEMBL data sets for various models. All the models have been tested for 3 times on each test set
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and the average results are presented. The best result on each data set is bold and the second best result is underlined.

ModelROC-AUCData Set 267 203 340 279 2842 325 333 4005 2971
NF 0.7403  0.6737 05884  0.7110 0.7899  0.6697  0.5827  0.6618  0.6091
GAT 0.8005  0.8811 0.8283  0.6686  0.8232 0.6234 09154 0.8629  0.6434
GCN 0.7667  0.8238  0.8232  0.8418 0.8214 0.8252 0.8566  0.9009 0.804
MPNN 0.6728  0.7471 0.7923  0.8043  0.8055 0.6411 0.8194  0.8157  0.7716
Weave 0.7939  0.8116 0.9269 0.7136  0.7612 0.7350  0.8802  0.8750  0.7273
AttentiveFP 0.7252  0.7806  0.7949  0.7561 0.7901 0.6986  0.9412 0.8707 0.7351
EAGCN 0.7576  0.8285  0.8607  0.8021 0.8474  0.8443 0.8297 0.8480  0.8277
MSGG 0.7230  0.7904 0.8353 0.7746  0.7784 0.7186 09113  0.8169  0.7510
FraGAT 0.7310 0.8236  0.8164 0.7735  0.8661 0.7808 0.9167 0.8074  0.7970
MSSGAT 0.8125 0.8345 0.8948 0.8162 0.8687 0.9080 0.8915 0.8418  0.8592
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Fig. 9. Histogram of ring numbers of molecules on the HIV data set. There are 6333
polycyclic (containing no less than 5 rings) and 34794 oligocyclic (containing less
than 5 rings) molecules, respectively.

set are well discriminated with a high Silhouette index [41]. On the
other hand, we also sample 5000 oligocyclic molecules from ZINC
and visualize their embeddings in the same way as the polycyclic
molecules, shown in Fig. 10(b). MSSGAT is relatively less effective
in oligocyclic molecules with a smaller Silhouette index, since they
may not take good advantage of the multi-level molecular sub-
structures of MSSGAT.

5.2. Comparison results on 4 benchmark data sets from MoleculeNet

We use 4 more benchmark data sets (with scaffold split) from
MoleculeNet [3] to verify the generalization ability of MSSGAT,
shown in Table 4. MSSGAT achieves the best results on 3 data sets
and ranks the third on BBBP. It indicates that MSSGAT can effec-
tively process molecular substructural features and has a good gen-
eralization ability, since the scaffold split is challenging to the gen-
eralization ability of a model.

5.3. Training process for MSSGAT

To analyze the training process of MSSGAT, we show it on the
training and validation sets of BACE and BBBP in Fig. 11. The loss
curves of MSSGAT on the training and validation sets tend to be
smooth after training for about 50 epochs and 15 epochs, respec-
tively. The ROC-AUC curves of MSSGAT on both BACE and BBBP are
close to 1.0, thus MSSGAT can be efficiently trained.

To further validate the prediction performance of MSSGAT, we
use the UMAP to visualize the latent spaces of MSSGAT and MPNN

UMAP embedding of MSSGAT

@) o

& ®

°

@f("Q
® "
@ Chain

' Q@ g :
51: 0 048 ®

Fig. 10. Visualization of the molecular embeddings of MSSGAT on the ZINC data
base. MSSGAT is trained by the HIV data set beforehand. A higher Silhouette index
indicates a better discrimination. (a) and (b) represent the embeddings of polycyclic
molecules and oligocyclic molecules, respectively.

on BACE, shown in Fig. 12. We can see that MSSGAT learns discrim-
inative embeddings for inhibitor identification, while MPNN could
not separate the two classes well.

5.4. Ablation experiments for MSSGAT

In order to analyze the contribution of each module to the
whole MSSGAT, we conduct ablation studies on the HIV and
the 9 ChEMBL data sets. The HIV data set contains about as
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Fig. 11. Training Processes of MSSGAT on BACE and BBBP.

Table 4

Prediction results on 4 benchmark data sets (with scaffold split) for vari-
ous models. All the models have been tested for 3 times on each test set
and the average results are presented. The best result on each data set is
bold and the second best result is underlined. OOM: Out of Memory.

ModelROC-AUCData Set ~ BACE SIDER BBBP HIV
NF 0.6099  0.5173 0.6333 0.6971
GAT 0.6704 0.5435 0.6583 0.7733
GCN 0.6132 0.5713 0.6836 0.7770
MPNN 0.6870  0.5235 0.6723 0.7181
Weave 0.6440  0.5351 0.6596 0.7457
AttentiveFP 0.6587  0.5619  0.659971 0.7503
MSGG 0.8740  0.5278  0.7530 OOM
EAGCN 0.8337  0.6063  0.8399 0.7497
FraGAT 0.7896  0.5788  0.6913 0.7341
MSSGAT 0.8805 0.6170 0.7264 0.7870

many as 40 thousand samples, thus it is reliable for ablation ex-
periments. The results in Table 5 show that MSSGAT with the
whole “raw + tree decomposition + ECFP” features outperforms
the single ECFP module, the single tree decomposition module
and the single raw molecular graph module on the validation
and the test sets. Next, we retain our “raw + tree decomposi-
tion + ECFP” features but try different readout modules (GRU,

10

Table 5
Ablation experiments on input features and the readout module
for MSSGAT on the HIV data set. ROC-AUC scores are used in

evaluation.

Model Validation Test

MSSGAT 0.8209 £0.025 0.7828 +0.020
Tree-only 0.8034+0.003  0.7540 +0.004
Raw-only 0.8038+£0.007  0.7663 + 0.010

ECFP-only 0.7598 & 0.001 0.7184 £+ 0.002

MSSGAT(GRU) 0.8209 £0.025 0.7828 +0.020
MSSGAT(LSTM) 0.8197 4+ 0.011 0.7547 +£0.021

MSSGAT(Concat + FC)  0.7915 +0.017 0.7451 £ 0.021

LSTM, and Concat + FC). The results in Table 5 indicate that our
GRU readout module outperforms other readout modules to some
extent.

To further examine whether tree decomposition is effective
in extracting substructural features from molecules or other ex-
traction methods could be better, we adopt a common frag-
mentation algorithm rdkit.Chem.Fragmentonbonds [28] in RDkit for
ablation experiments. Similar to the fragmentation in FraGAT
[25], we retain all ring structures and break all acyclic single
bonds to obtain the corresponding fragments by the function rd-
kit.Chem.Fragmentonbonds, and substitute these fragments for the



X.-b. Ye, Q. Guan, W. Luo et al.

Table 6
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Ablation experiments on feature extraction methods for MSSGAT on 9 ChEMBL data sets. ROC-AUC scores are used in evaluation. The
best result on each data set is bold and the second best result is underlined. “AVG” indicates the average ROC-AUC score of a model on
9 ChEMBL data sets. MSSGAT®: MSSGAT with tree decomposition features. MSSGAT?: MSSGAT with common fragmentation features.

ModelROC-AUCData Set 267 203 340 279

2842 325 333 4005 2971 AVG

MSSGAT® (Ours)
MSSGAT?
Tree-only
Raw-only
ECFP-only

0.8345
0.8169
0.7766
0.8138
0.7955

0.8948
0.8682
0.8865
0.8698
0.8295

0.8162
0.8266
0.7723
0.7567
0.8157

0.8687
0.8518
0.8342
0.8041
0.8477

0.9080
0.8387
0.7845
0.7448
0.7759

0.8915
0.9192
0.9135
0.9549
0.855

0.8418
0.8523
0.833

0.7695
0.8451

0.8592
0.8153
0.7540
0.7877
0.7911

0.8586
0.8441
0.8178
0.8128
0.8122

UMAP embedding of BACE (MSSGAT)

class 0
B class 1

Sl: 0.291

UMAP embedding of BACE (MPNN)

class 0
mm class 1

= 2 o
. é 3

.

SI: 0.067

Fig. 12. Latent space visualizations via UMAP for MSSGAT (Upper) and MPNN
(Lower) on BACE. A higher Silhouette index indicates a better discrimination.

1

tree decomposition features in MSSGAT. We denote our default
MSSGAT with tree decomposition features and the altered MSS-
GAT with the common fragmentation features as MSSGAT? and
MSSGAT?, respectively. The results on the 9 ChEMBL data sets in
Table 6 show that MSSGAT? outperforms MSSGAT? in most cases.
We also visualize the fragment features of MSSGAT? and MSSGAT?
in Fig. 13, which indicate that MSSGAT? provides more fragments
and finer segmentations than MSSGAT’. This may be the reason
why MSSGAT? is better than MSSGAT?. To summarize this subsec-
tion, MSSGAT is effective in expoiting multi-level molecular sub-
structures from the proposed “raw + tree decomposition + ECFP”
features according to the above ablation experiments.

5.5. Important structure visualization

To further explore what information MSSGAT can provide on
molecular structures, we visualize some molecules on the BACE
data set and label the most important structures according to the
attention scores (weights) in the prediction step of MSSGAT. Specif-
ically, We extract the attention scores from the last GAC block of
the “tree decomposition” branch of the well-trained MSSGAT. Then
we sort the attention scores of all the tree nodes, and visualized
the largest one (colored orange in Fig. 14). It indicates that MSS-
GAT allocates major attention to some common structures (e.g.,
carbon-oxygen double bonds, fluorine atoms and structures with
ammonia), which may be an interesting reference for drug design-
ers from a different perspective of machine learning.

6. Conclusion

In this work, we develop a novel Molecular SubStructure Graph
ATtention (MSSGAT) network to capture substructural interact-
ing information with structural feature extraction including raw
molecular graphs, tree decomposition features, and Extended-
Connectivity FingerPrints (ECFP). MSSGAT consists of several GAC,
DNN and readout blocks that could effectively process molecu-
lar structural features and exploit the relationships between dif-
ferent molecular cliques of tree decomposition. Furthermore, MSS-
GAT uses both low-level and high-level features in classification to
improve generalization ability, and adopts the dropout technique
to relieve the gradient vanishing problem. Experimental results
show that MSSGAT outperforms other state-of-the-art competi-
tors in most cases. MSSGAT could also reveal important molecular
structures by examining the attention scores, which gives a refer-
ence for drug designers from the perspective of machine learning.
In summary, MSSGAT is an effective tool for molecular property
identification and worth further investigations. Since MSSGAT is
designed mainly for large and polycyclic molecules, it is relatively
less effective in oligocyclic molecules. Future works could be de-
signing different models for molecules with different sizes or find-
ing more general molecular features for molecules with different
substructures.



X.-b. Ye, Q. Guan, W. Luo et al.

Pattern Recognition 128 (2022) 108659

OH

\_

A

109404,

Fig. 13. Fragment features for: (a) MSSGAT®. (b) MSSGAT®.

Fig. 14. Important structure visualization on the BACE data set. The atoms in orange represent the most important components indicated by MSSGAT. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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